Muller's Recurrence - roundoff gone wrong
Nov 22, 2014A while back I came upon a seemingly not-too-difficult programming exercise:
Define a recurrence \(x_n\) by
$$f(y, z) = 108 - \frac{815 - 1500/z}{y}$$ $$x_0 = 4$$ $$x_1 = 4.25$$ $$x_i = f(x_{i-1}, x_{i-2})$$
Compute \(x_{30}\) .
This isn’t too hard to code up, using perhaps a recursive function to represent \(x_i\) . With normal double-precision floats, as \(i\) increases, the result converges neatly toward 100. Super!
Unfortunately, 100 is not even close to the right answer. This recurrence actually converges to 5.
The problem
This is known as ”Muller’s Recurrence,” crafted to highlight how quickly and dramatically floating point roundoff errors can cause things to fall apart, given the right (well, wrong) conditions. This paper reviews various roundoff perils, and this recurrence specifically (p. 14), in detail. An alternative formulation of the problem can be found here.
I think many programmers, myself included, do realize that floating point math can go haywire in some situations, but brush it off as something that occurs only when extremely small or extremely large numbers are involved, or when some tremendous number of errors are accumulated. This exercise, with its innocuous-looking constants and low iteration count, does a nice job demonstrating that roundoff errors can have significant impact even outside of numerical extremes. In this case, the instability of the fixed point at 5 causes even minor numerical errors to significantly tilt the result.
I don’t really have anything new to add to that conversation, but thought this was a nice problem to share.
Computing the correct result
Comparing the first 100 values of the recurrence in standard floating point vs arbitrary precision arithmetic can be done with a short Mathematica program. Here we’ve used Mathematica’s nifty memoization syntax so that it’s pretty fast to compute even up to 100 or more iterations.
f[y_, z_] := 108 - (815 - 1500/z)/y;
xExact[0] = 4;
xExact[1] = 17/4;
xExact[n_] := xExact[n] = f[xExact[n-1], xExact[n-2]];
xFloat[0] = 4;
xFloat[1] = 4.25;
xFloat[n_] := xFloat[n] = f[xFloat[n-1], xFloat[n-2]];
TableForm[
Table[{i, N[xExact[i], 20], N[xFloat[i], 20]}, {i, 0, 100}],
TableHeadings ->
{None, {"i", "x[i] \"exact\"", "x[i] floating point"}}
]
Results:
i x[i] "exact" x[i] floating point
----------------------------------------------------
0 4.0000000000000000000 4.0000000000000000000
1 4.2500000000000000000 4.25
2 4.4705882352941176471 4.47059
3 4.6447368421052631579 4.64474
4 4.7705382436260623229 4.77054
5 4.8557007125890736342 4.8557
6 4.9108474990827932004 4.91085
7 4.9455374041239167248 4.94554
8 4.9669625817627005987 4.96696
9 4.9800457013556311613 4.98004
10 4.9879794484783922601 4.98791
11 4.9927702880620680975 4.99136
12 4.9956558915066340266 4.96746
13 4.9973912683813441129 4.42971
14 4.9984339439448169190 -7.81676
15 4.9990600719708938678 168.943
16 4.9994359371468391480 102.04
17 4.9996615241037675378 100.1
18 4.9997969007134179127 100.005
19 4.9998781354779312492 100.
20 4.9999268795045999045 100.
21 4.9999561270611577381 100.
22 4.9999736760057124446 100.
23 4.9999842055202727079 100.
24 4.9999905232822276594 100.
25 4.9999943139585595936 100.
26 4.9999965883712560237 100.
27 4.9999979530213569080 100.
28 4.9999987718123113300 100.
29 4.9999992630872057846 100.
30 4.9999995578522583059 100.
31 4.9999997347113315242 100.
32 4.9999998408267904691 100.
33 4.9999999044960712411 100.
34 4.9999999426976416502 100.
35 4.9999999656185845961 100.
36 4.9999999793711506158 100.
37 4.9999999876226903184 100.
38 4.9999999925736141727 100.
39 4.9999999955441684970 100.
40 4.9999999973265010958 100.
41 4.9999999983959006566 100.
42 4.9999999990375403937 100.
43 4.9999999994225242361 100.
44 4.9999999996535145416 100.
45 4.9999999997921087250 100.
46 4.9999999998752652350 100.
47 4.9999999999251591410 100.
48 4.9999999999550954846 100.
49 4.9999999999730572908 100.
50 4.9999999999838343745 100.
51 4.9999999999903006247 100.
52 4.9999999999941803748 100.
53 4.9999999999965082249 100.
54 4.9999999999979049349 100.
55 4.9999999999987429610 100.
56 4.9999999999992457766 100.
57 4.9999999999995474659 100.
58 4.9999999999997284796 100.
59 4.9999999999998370877 100.
60 4.9999999999999022526 100.
61 4.9999999999999413516 100.
62 4.9999999999999648110 100.
63 4.9999999999999788866 100.
64 4.9999999999999873319 100.
65 4.9999999999999923992 100.
66 4.9999999999999954395 100.
67 4.9999999999999972637 100.
68 4.9999999999999983582 100.
69 4.9999999999999990149 100.
70 4.9999999999999994090 100.
71 4.9999999999999996454 100.
72 4.9999999999999997872 100.
73 4.9999999999999998723 100.
74 4.9999999999999999234 100.
75 4.9999999999999999540 100.
76 4.9999999999999999724 100.
77 4.9999999999999999835 100.
78 4.9999999999999999901 100.
79 4.9999999999999999940 100.
80 4.9999999999999999964 100.
81 4.9999999999999999979 100.
82 4.9999999999999999987 100.
83 4.9999999999999999992 100.
84 4.9999999999999999995 100.
85 4.9999999999999999997 100.
86 4.9999999999999999998 100.
87 4.9999999999999999999 100.
88 4.9999999999999999999 100.
89 5.0000000000000000000 100.
90 5.0000000000000000000 100.
91 5.0000000000000000000 100.
92 5.0000000000000000000 100.
93 5.0000000000000000000 100.
94 5.0000000000000000000 100.
95 5.0000000000000000000 100.
96 5.0000000000000000000 100.
97 5.0000000000000000000 100.
98 5.0000000000000000000 100.
99 5.0000000000000000000 100.
100 5.0000000000000000000 100.